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S1 Idealized model: analytical details

Here we attempt to understand the optimal sensor organization when transport is not limited by physical

constraints. This idealized mathematical situation allows us to make accurate analytical statements which

will be a useful guide to the more “realistic” stochastic model. The input signal f is taken to be piece-wise

constant in time with f(x, t) = fk(x) , for t ∈
[
kτ, (k + 1)τ

)
, where each function fk(x) is chosen from the

1



following set of functions

F =

{
f(x) : f(x) ∈ C1,

∥∥∥∥[ ∂f∂x1

∂f
∂x2

]∥∥∥∥ ≤ 1

ξ

}
, (1)

where ‖·‖ is the Euclidean norm and ξ is the spatial correlation length of the signal1.

We compare the performance of two different signal acquisition architectures - stationary and mobile. In

the perfect mobile architecture all sensors move in a coordinated fashion with velocity v and in the diffusion-

advection mobile architecture the sensor movement approximates diffusion-advection transport. We show

that there is a phase transition from stationary to mobile architecture as a function of the sensor density ρ,

sensor velocity v, sensor sampling time tm, and the correlation length and time ξ and τ .

S1.1 Phase transition between stationary and perfect mobile architectures

Let Z = {y : s(y) > 0} denote the sensor locations, and suppose that the sensors sample the function every

tm seconds. Since the sensors take measurement at a frequency 1
tm

, there are τ
tm

sampling instants in each

signal period; consequently, the variance of the function estimate f̂(y) is given by

var(f̂(y)− f(y)) =
σ2
p

(s(y))(1+γ)
· tm
τ
.

We assume that the approximation f̂(x) at a location x with no sensors, i.e. x 6∈ Z, function is reconstructed

using a nearest neighbor mapping; i.e. the function estimate f̂(x) at a the location x is mapped to the location

y ∈ Z that minimizes the total expected error

ε(x|y) = max
f∈F

E(f(x)− f̂(y))2 = max
f∈F

E(f(x)− f(y))2 +
σ2
ptm

s(y)
=
‖x− y‖2

ξ2
+

σ2
ptm(

s(y)
)(1+γ) ,

where the last expression follows from the fact f(x) − f(y) = ∇f(z)>(x − y) for some z ∈ [x, y], and

‖∇f(z)‖ ≤ 1
ξ for all f ∈ F . Therefore, it follows that the minimum mean-square error ε(x|s) at location x

is given by2

ε(x|s) = min

{
‖x− y‖2

ξ2
+

σ2
ptm

τ(s(y))(1+γ)
: y ∈ Z

}
.

1The results do not change if the functions fk(x) are drawn from a Gaussian random field with correlations

cor
(
fk(x), fl(y)

)
= δklK

(
‖x−y‖
ξ

)
, where K(·) is a non-negative decreasing function of its argument.

2For the Gaussian random field fk, ε(x|s) = min

{
2σ2
f

(
1−K

(
‖x−y‖
ξ

))
+

σ2
ptm

τ(s(y))(1+γ)
: y ∈ Z

}
.
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The error ε(x|s) has two components. The first component is the spatial error associated with function de-

correlation over the correlation length ξ, and the second component is the error associated with sensor noise.

The worst-case overall estimation error ε(s) = maxx{ε(x|s)}. We propose that the optimal sensor architecture

minimizes the error ε(s). We use the maximum error criterion in order to avoid having to postulate a measure

over the spatial and temporal dimension. The scaling results in this paper remain true if the maximum error

is replaced by average error. Let the Voronoi cell V(y) = {x : argminw∈Z ε(x|w) = y} denote the set of

positions x that are mapped to a particular sensor location y. Then ε(s) = maxy∈Z maxx∈V(y) ε(x|y). Thus,

the optimal sensor placement s is a solution to the optimization problem

min maxy∈Z maxx∈V(y)

{
‖x−y‖2
ξ2 +

σ2
ptm

τ(s(y))(1+γ)

}
,

s.t.
∑
y:y∈Z s(y) = ρL2, s(y) non-negative integer.

(2)

The optimization problem (2) is a variant of vector quantization (1) where, in addition to the the sensor

locations Z, the number of sensors s at each location is also a decision variable. In the rest of the analysis,

we will take the thermodynamic limit and relax the constraint that s(y) is an integer; and replace it with

the constraint, that either s(y) = 0, i.e. y is not a signal acquisition location, or s(y) ≥ 1, i.e. there is at

least one sensor at each signal acquisition location y.

In the limit of large L and tm, an optimal solution is to tesselate space with identical Voronoi cells V, and

the set Z consists of the centroids of V. The signal de-correlation error then depends on the distance ‖x− y‖

from a measurement location y; therefore, it follows that one of the ideal Voronoi tesselation corresponds to

the hexagonal packing with regular hexagons H(r) with a radius r that is function of the correlation length

ξ, the density γ and γ.

Suppose V = H(r). Since the area of the hexagon H(r) = 3
√
3

2 r2, it follows that s = 3
√
3

2 (ρr2). Therefore,

the maximum error εs(r) in the Voronoi cell V is given by

εs(r) =
r2

ξ2
+

2σ2
ptm

3
√

3τ(ρr2)(1+γ)

It is convenient to use dimensionless quantities, ` = r
ξ , δ =

2σ2
p

3
√
3
· tmτ , and λ = 1√

ρξ2
. The error of stationary
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Figure S1: Perfect mobile architecture

architecture for a given radius ` is given by

εs(`; δ, λ) = `2 +
δλ2(1+γ)

`2(1+γ)
. (3)

The constraint s(y) ≥ 1 translates to ρξ2`2 ≥ 1, or equivalently, ` ≥ λ. Thus, the optimal error of the

stationary architecture is given by

ε∗s(δ, λ) = min
`≥λ
{εs(`; δ, λ)} .

Recall that the function estimation error is the sum of the spatial error and statistical error. The

stationary mechanism is clearly optimal for minimizing the statistical error term since it maximizes the

number of independent measurements at each sampling location y. It is possible that mobile sensors, that

are able to sample the function at more locations, can significantly reduce the spatial error. However,

mobility reduces the number of measurements at any given location increasing the statistical error.

Suppose in the hexagonal packing with radius r, instead of remaining stationary, the sensors alternate

between the three different hexagonal packing configuration that all tesselate the plane 3. Then the distance

of any location x to a signal acquisition position y is at most r√
3

(see Figure S1), i.e. the spatial error term

3This analysis can be extended to a mobile architecture that alternates between an arbitrary number of configurations.
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reduces to ( r√
3ξ

)2. However, the number of independent temporal samples at each sensor location is not τ
tm

.

Since the sensors move a distance r in every move, the re-organization of the sensors takes r
v time units, the

time available for sensing is τ
3 − r

v . Therefore, the sum of the spatial and the statistical for this architecture

(in terms of the scaled distance `) is given by

εm(`; δ, λ, θ) =
`2

3
+

3δλ2(1+γ)

(1− `
θ )`2(1+γ)

,

where θ = vτ
3ξ is a dimension-less term that measures the trade-off between the correlation length ξ, velocity

v and the signal duration (correlation time) τ .

The error εm(`; δ, λ, θ) is a decreasing function of θ; and, the minimum error ε∗m(δ, λ,∞) = min`≥λ{ `
2

3 +

3δλ2(1+γ)

`2(1+γ)
}. Next, we compare ε∗s(δ, λ) and ε∗m(δ, λ,∞) for different values of γ.

(a) γ = 0, i.e. independent sensors. We have to consider three cases:

(i) δ
1
4λ

1
2 > λ, i.e. λ <

√
δ, or equivalently, ρξ2 ≥ 1

δ : In this case, `∗s = δ
1
4λ

1
2 and `∗m =

(
9δ
) 1

4λ
1
2 , and

the optimal error of both architectures is

ε∗s(δ, λ) = ε∗m(δ, λ,∞) = 2λ
√
δ,

i.e. the mobile and stationary architecture have the same optimal error.

(ii)
√

3δ
1
4λ

1
2 ≥ λ > δ

1
4λ

1
2 , or equivalently,

√
δ < λ < 3

√
δ: In this case, In this case, `∗s = λ and

`∗m =
(
9δ
) 1

4λ
1
2 , and the optimal error

ε∗s(δ, λ) = λ2 + δ > ε∗m(δ, λ,∞) = 2λ
√
δ,

i.e. the mobile architecture has strictly superior performance.

(iii)
√

3δ
1
4λ

1
2 < λ, or equivalently, λ > 3

√
δ: In this case, In this case, `∗s = `∗m = λ, and the optimal

error

ε∗s(δ, λ)− ε∗m(δ, λ,∞) = (λ2 + δ)−
(
λ2

3
+ 3δ

)
=

2

3
(λ2 − 3δ) >

2

3
(9δ − 3δ) = 4δ > 0,

i.e. the mobile architecture has strictly superior performance.
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(b) γ > 0, i.e. sensors display allosteric interaction. We have to consider three cases:

(i) λ <
(
δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 , i.e. λ <

√
δ(1 + γ): In this case, `∗s =

(
δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 and

`∗m =
(
δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 , and the optimal error

ε∗m(δ, λ,∞) = 3−
γ
γ+2 ε∗s(δ, λ) = 3−

γ
γ+2 δ

1
γ+2λ

2(γ+1)
γ+2

(
γ + 2

(1 + γ)
2
γ+2

)
,

i.e. mobile architecture has strictly superior performance.

(ii)
(
δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 < λ ≤

(
9δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 , or equivalently,

√
(1 + γ)δ < λ ≤ 3

√
(1 + γ)δ:

In this case, `∗s = λ and `∗m =
(
9δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 , and the optimal error

ε∗s(δ, λ) = λ2 + δ > 3
γ
γ+2 ε∗m(δ, λ,∞),

i.e. mobile architecture has strictly superior performance.

(iii)
(
9δ(1+γ)

) 1
2(γ+2)λ

γ+1
γ+2 < λ, or equivalently, λ > 3

√
(1 + γ)δ: In this case, In this case, `∗s = `∗m = λ,

and the optimal error

ε∗s(δ, λ)− ε∗m(δ, λ,∞) = (λ2 + δ)−
(
λ2

3
+ 3δ

)
=

2

3
(λ2 − 3δ) >

2

3
(9(1 + γ)δ − 3δ) > 0,

i.e. mobile architecture has strictly superior performance.

(c) −1 < γ < 0, i.e. sensors display negative interaction. We have to consider three cases:

(i) λ <
(
δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 , i.e. λ <

√
δ(1 + γ): In this case, `∗s =

(
δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 and

`∗m =
(
δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 , and the optimal error

ε∗m(δ, λ,∞) = 3−
γ
γ+2 ε∗s(δ, λ) = 3−

γ
γ+2 δ

1
γ+2λ

2(γ+1)
γ+2

(
γ + 2

(1 + γ)
2
γ+2

)
,

i.e. the stationary architecture has strictly superior performance.

(ii)
(
δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 < λ ≤

(
9δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 , or equivalently,

√
(1 + γ)δ < λ ≤ 3

√
(1 + γ)δ:

In this case, `∗s = λ and `∗m =
(
9δ(1 + γ)

) 1
2(γ+2)λ

γ+1
γ+2 . In this parameter regime, the error of the

stationary architecture is smaller (resp. larger) than the error of the mobile architecture, when

λ2 + δ is less than (resp. larger than) 3−
γ
γ+2 δ

1
γ+2λ

2(γ+1)
γ+2

(
γ+2

(1+γ)
2
γ+2

)
.
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(iii)
(
9δ(1+γ)

) 1
2(γ+2)λ

γ+1
γ+2 < λ, or equivalently, λ > 3

√
(1 + γ)δ: In this case, In this case, `∗s = `∗m = λ,

and the optimal error

ε∗s(δ, λ)− ε∗m(δ, λ,∞) = (λ2 + δ)−
(
λ2

3
+ 3δ

)
=

2

3
(λ2 − 3δ) > 0,

provided λ2 > 3δ, i.e. the mobile architecture has a strictly superior performance for large enough λ.

The results of this analysis are summarized in Table 1. Next, we analyze the performance for finite θ.

ε∗m(η, θ) = min
`≥λ

{
`2

3
+

3δλ2(1+γ)

(1− `/θ)`2(1+γ)
}

= θ2 · min
x≥λθ

{
x2

3
+

3
(
η(λθ )2(γ+2)

)
(1− x)x2(1+γ)

}
.

Let f(y, z) = minx≥z
{
x2

3 + 3y
x2(1+γ)

}
. Then the phase transition between mobile and stationary architecture

is given by

θ2f

(
δλ2(1+γ)

θ2(γ+2)
,
λ

θ

)
≤ ε∗s(δ, λ).

The function f(y, z) is hard to compute, so we will attempt to approximate the phase boundary. Suppose

θ ≥ α`∗m(δ, λ,∞). Then

ε∗m(δ, λ, θ) = min
`≥λ

{
`2

3
+

3δλ2(1+γ)

(1− `/θ)`2(1+γ)
}
,

≤
(
`∗m(δ, λ,∞)

)2
3

+
3δλ2(1+γ)(

1− `∗m(η,∞)/θ
)(
`∗m(δ, λ,∞)

)2(1+γ)
≤ `∗m(δ, λ,∞)2

3
+
( α

α− 1

) 3δλ2(1+γ)(
`∗m(δ, λ,∞)

)2(1+γ) ,
≤

( α

α− 1

)
ε∗m(δ, λ,∞).

Therefore, it follows that the error ε∗m(δ, λ, θ) ≤ εs(λ, θ) whenever θ ≥ α`∗m(δ, λ,∞), and ε∗m(δ, λ,∞) ≤(
α−1
α

)
ε∗s(δ, λ). Consider, for example, the parameter regime γ ≥ 0, and λ > 3

√
(1 + γ)δ. In this regime

`∗m(δ, λ,∞) = λ, and
ε∗m(δ,λ,∞)
ε∗s(δ,λ)

≤ 6+3γ
10+9γ . Therefore, the `∗m(δ, λ, θ) < ε∗s(δ, λ) provided θ ≥

(
10+9γ
4+6γ

)
λ.

S1.2 Diffusion-advection mobile architectures

The perfectly mobile architecture requires a perfectly co-ordinated mechanism to transport sensors, and,

in addition, the signal sampling time has to be perfectly co-ordinated with the movement when the radius

7



−1 < γ < 0 γ = 0 γ > 0

λ ≤
√

(1 + γ)δ Stationary Stationary = Mobile Mobile√
(1 + γ)δ < λ ≤ 3

√
(1 + γ)δ Stationary → Mobile Mobile Mobile

3
√

(1 + γ)δ < λ Mobile Mobile Mobile

Table 1: Optimal architecture as function of (δ, λ, γ)

r∗ > vtm. Next, we describe a architecture where the sensors move in an asynchronous manner; however,

they are assembled at the new positions by time tm, and therefore, one does not have to co-ordinate the

sampling time. We will call this mechanism the diffusion-advection driven architecture. This architecture is

a close approximation for the signaling platforms driven architecture that we describe in the next section.

A fraction κ of all the sensors are assembled at the Voronoi center and the remaining (1−κ) fraction of the

sensors are freely diffusing in the region. The freely moving sensors are attracted to the new Voronoi centers

via an advection mechanism and the uniform density is restored by sensors diffusing from the previous Voronoi

sensors. Let ta denote the advection time required for the sensors move from one hexagonal configuration to

another. Since (1− κ)ρπ(vtd)
2 sensors are assembled at the new Voronoi center, it follows that the fraction

of bound sensors κ is the solution of the equation (1 − κ)ρπ(vta)2 = 3
2κρr

2, i.e. κ = 1

1+ 3r2

2π(vta)2

. Note that

we are implicitly assuming that only diffusing sensors can be focused at the new centers. Assuming only the

sensors at the Voronoi centers are able to estimate the function, the error of this architecture is given by

εd(`; δ, λ, v) =
`2

3
+

3δλ2(1+γ)

(1− 3τa/τ)
·
(

1 +
3`2

2π(vτa/ξ)2

)(1+γ)

· 1

`2(1+γ)

We expect vτa ≈ r, i.e. the advection current collects all the sensors in a radius r around the new Voronoi

center. In this case,

εd(`; δ, λ, θ) =
`2

3
+

(
1 +

3

2π

)(1+γ)
δλ2(1+γ)

(1− `/θ) ·
1

`2(1+γ)

From analogy to the perfect mobile architecture,

ε∗d(δ, λ, θ) = ε∗m

(
δ,

(
1 +

3

2π

) 1
2

λ, θ

)
.
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Thus, we see that the threshold value of γ at which the limiting diffusion-advection mechanism is superior

to the stationary mechanism is higher than the threshold value of γ for the perfect mobile architecture.

S2 “Realistic” stochastic model: simulation details

Target signal class. The signal f(x, t) to be estimated is a Gaussian random field with the variance

var(f(x, t)) = σ2
f correlation

cor (f(x, t), f(y, s)) =
1

1 + ‖x−y‖2
ξ2 + |t−u|2

τ2

,

where ξ denotes the normalized correlation length in space and τ is the correlation length in time. Without

loss of generality we will assume that E[f(x)] = 0 for all x ∈ L.

Sensor movement. The details of the model are as follows. The sensors move on L × L lattice L with

L = 211 = 2048 with toroidal boundary conditions. We considered sensor density ranging from ρ = 10−6

to ρ = 10, which translates to approximately Np = 4 to 10L2 sensors. In the absence of SPs, in each

time step each sensor randomly diffuses to one of its 4 nearest neighbors with equal probability. Thus, the

diffusion constant D is the same in each direction, and is given by D = 1
8 . The presence of SPs modulates

the sensor movement as follows. Let r(x) denote the distance of the lattice position x to the nearest SP

location. We assume that the “field” associated with a given SP extends to a radius R. When r(x) > R, all

sensors at position x are inactive and diffusing. When r(x) ≤ R, an inactive sensor at location x becomes

active with probability pa. An active sensor at location x is actively transported by the “field” associated

with the SP. The potential corresponding to this “field” is given by V (x) = βmin
{
r(x)
R − 1, 0

}
. When

r(x) > 0, i.e. there is no SP at location x, an active sensor moves to a neighboring lattice location y

with probability proportional to e−(V (y)−V (x)); consequently, the advection velocity v = 1
2 tanh(β/R). When

r(x) = 0, an active sensor does not move. We set R = 10 for all our simulations; therefore, the Péclet number

Pe = vR/D = 4R tanh(β/R) = 40 tanh(β/10). In each time step, each active sensor becomes inactive with

probability 1− pa.
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Signal estimation. All sensors make a measurement every tm time units. Therefore, the sensor makes

τ/tm measurements within the correlation time period τ . A sensor at location y at time u is reads

f(y, u) + σpζ,

where ζ is a standard Normal random variable independent of f . Therefore, if there are s(y, u) sensors

co-located at positive y at time u, the estimate

f̂(y, u) = f(y, u) +
σp√
s(y, u)

ζ

where ζ is a standard Normal random variable independent of f . Note that unlike in the diffusion-advection

transport model, all sensors sense the signal. The signal f(x, t) is estimated using all measurements f̂(y, u)

assuming that the correlation structure of the signal is known. Let f denote the matrix {f(x, t) : x ∈ L, t ∈

[0, T ]} stacked up as a column vector, and let f̂ denote the matrix {f̂(y, t) : y ∈ Zt, t ∈ [0, T ]}, where Zt

denotes the set of all lattice locations with non-zero sensors. Note that the vector f̂ is random because the

sensor locations are random.

Since f is a Gaussian random field, and the noise is also Gaussian, a linear estimator minimizes the mean

square error. Let Bf̂ denote a linear estimator for f given f̂. Then the optimal estimator is given by the

solution of the optimization problem

min
B

E
∥∥f−Bf̂

∥∥2 = min
B

{
E[‖f‖2]− 2 Tr

(
B>E[̂f

>
f]
)

+ Tr
(
B>E[̂f̂f

>
]B
)}

Let B∗ denote the optimal solution of this optimization problem. Then the average mean-squared error is

given by

ε =
1

T · L2

(
E[‖f‖2]− 2 Tr

(
(B∗)>E[̂f

>
f]
)

+ Tr
(
(B∗)>E[̂f̂f

>
]B∗
))

Note that ε is random because the sensor positions are random; however, in the simulation experiments we

set T large enough so that ε converges to its average value.

Signaling platforms. We assume that nsp SPs are distributed randomly over the L × L lattice. The

average distance between SPs is approximately L√
πnsp

. We assumed that R = 1
2 · L√

πnsp
. In the rest of this

section, we discuss results of our simulations. We simulated the system under three conditions:

10



(a) Diffusion (Passive diffusion phase): No SPs present and the sensors diffuse in the lattice.

(b) Fixed SPs (Stationary phase): Uniformly placed SPs that do not move and are able to attract the

sensors.

(c) Mobile SPs (Active clustering phase): SP locations are chosen uniformly, and SP relocates after an

exponentially distributed lifetime τ . Note that the mean SP lifetime is taken to be the same as the

signal correlation length τ in time. We are implicitly assuming that the SP lifetime has evolved to

“match” the signal correlation in time.

Simulation parameters and error comparison. We compared the mean error achieved by these three

signaling strategies as a function of changing the following set of parameters:

(i) SP “field” strength β. The default value was β = 10.

(ii) The number of SPs nsp. The default value was nsp = 8.

(iii) The correlation length ξ. The default value was ξ = L
16

(iv) The correlation time τ . The default value was τ = 100

(v) The frequency of measurement τm = τ
tm

. The default value was τm = 10.

(vi) The density of sensor ρ. The default value for ρ = 0.1.

(vii) The activation probability pa. The default value was pa = 0.78. This default value was the approximate

value where the mobile SP architecture achieve minimum estimation error.

The sensor noise variance σ2
p and the signal variance σ2

f were held constant. We simulated for Nev = 1000

aster break up events in each condition.

S3 Extension of phase diagram: finite size of sensor

In the simulations (and idealized analysis), the sensors are treated as point particles. However at high enough

sensor density or low η, one needs to account for the finite size of sensors. This leads to an extension of the

11



phase diagram as beyond the hashed transition in Fig. 2 of the main manuscript.

The extension of the phase boundary is obtained using the following argument: The number of sensor

N at the center of a Voronoi cell with radius r is given by N = 3
√
3

2 πρr2. Suppose each sensor occupies an

“effective” area A, where we interpret A to be the minimum area required for effective advection to occur.

Suppose the sensors in the center of a Voronoi cell are arranged in a hexagonal close packing with radius R.

Then 3
√
3

2 πR2 = NA = 3
√
3

2 πρr2A, i.e. R =
√
ρAr. In order to differentiate between the active clustering

architecture and the stationary architecture, the sensor cluster at the Voronoi cells must not intersect, i.e.,

R < r or ρ < 1/A. Since the effective area A is considerably larger that the sensor area, the upper bound

on density is considerably lower than the bound implied by sensors jamming.
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(b) γ = −0.5

Figure S2: Phase diagram for correlated sensors in realistic model using Monte Carlo simulations

as a function of (scaled) inter-sensor distance η and Péclet number θ,
(
η ≡ (σ2

f/σ
2
p)/(ρξ2)

(1+γ)
2 , θ ≡ (Pe τ)/ξ

)
,

for (a) Strongly correlated sensors (γ = 0.5) as a result of allosteric feedback, and (b) Anti-correlated sensors

(γ = − 0.5). Phase diagram for independent uncorrelated sensors (γ = 0) is shown in main text. The phase

boundaries are first-order as seen from the intersections of the ‘error’-branches as one moves along a cut

across the phase diagram (Fig. S3). The measurement frequency τm = 10 for all the simulations. Values for

the remaining four parameters, Pe, τ , ξ and ρ, were varied within a range and combined to construct the

pair (η, θ). In the simulations (and idealized analysis), the sensors are treated as point particles. However

at high enough sensor density (low η), one needs to account for steric constraints arising from the finite

size of sensors (S.I). This leads to an extension of the phase diagram shown beyond the hashed transition

boundaries.
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(a) Error vs ρ (high θ)
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(b) Error vs ρ (low θ)

Figure S3: Intersection of estimation error ‘branches’. (a) Estimation error of the three different

phases as a function of ρ for high θ = (Pe τ)/ξ. The optimal phase is that which attains the smallest error

for a given density. The optimal architecture goes from being passive diffusion to active clustering as the

sensor density is increased; the stationary lattice is never optimal. (b) Estimation error of the three different

phases as a function of ρ for low θ = (Pe τ)/ξ. The optimal architecture goes from being passive diffusion

to stationary lattice to active clustering as the sensor density is increased. It is clear from the intersections

of the error ‘branches’, that all the phase transitions are first-order.
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(a) Relative error vs nsp
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Figure S4: More on robustness of optimal solution in the active clustering phase. (a) Plot of

relative error in the active clustering phase as a function of activation rate pa for different values for nsp, the

number of SPs. Note that we have normalized the plots for different values of nsp so that the minimum value

is 1. (b) Plot of relative error in the active clustering phase as a function of activation rate pa for different

values for sensor correlation γ shows that the minimum is robust at p∗a ≈ 0.78, and is more sensitive at low

values of γ.
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Figure S5: Surface plots showing robustness of optimal solution in the active clustering phase.

(a)-(c) Optimal probability p∗a as a function of the pair of parameters (·, ·) exhibits a flat unchanged profile

over a wide range demonstrating its robustness. Note that except for Pe, the rest of the parameters are

varied in log-scale.
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